4.8 Article

Acceptable symbiont cell size differs among cnidarian species and may limit symbiont diversity

Journal

ISME JOURNAL
Volume 11, Issue 7, Pages 1702-1712

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ismej.2017.17

Keywords

-

Funding

  1. Australian Research Council [DP110102364]
  2. ministry of Education, Culture, Sports, Science and Technology of Japan [15K14611]
  3. Grants-in-Aid for Scientific Research [15K14611] Funding Source: KAKEN

Ask authors/readers for more resources

Reef-building corals form symbiotic relationships with dinoflagellates of the genus Symbiodinium. Symbiodinium are genetically and physiologically diverse, and corals may be able to adapt to different environments by altering their dominant Symbiodinium phylotype. Notably, each coral species associates only with specific Symbiodinium phylotypes, and consequently the diversity of symbionts available to the host is limited by the species specificity. Currently, it is widely presumed that species specificity is determined by the combination of cell-surface molecules on the host and symbiont. Here we show experimental evidence supporting a new model to explain at least part of the specificity in coral-Symbiodinium symbiosis. Using the laboratory model Aiptasia-Symbiodinium system, we found that symbiont infectivity is related to cell size; larger Symbiodinium phylotypes are less likely to establish a symbiotic relationship with the host Aiptasia. This size dependency is further supported by experiments where symbionts were replaced by artificial fluorescent microspheres. Finally, experiments using two different coral species demonstrate that our size-dependent-infection model can be expanded to coral-Symbiodinium symbiosis, with the acceptability of large-sized Symbiodinium phylotypes differing between two coral species. Thus the selectivity of the host for symbiont cell size can affect the diversity of symbionts in corals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available