4.8 Article

NFYB-1 regulates mitochondrial function and longevity via lysosomal prosaposin

Journal

NATURE METABOLISM
Volume 2, Issue 5, Pages 387-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s42255-020-0200-2

Keywords

-

Funding

  1. Max Planck Society

Ask authors/readers for more resources

Mitochondria are multidimensional organelles whose activities are essential to cellular vitality and organismal longevity, yet underlying regulatory mechanisms spanning these different levels of organization remain elusive(1-5). Here we show that Caenorhabditis elegans nuclear transcription factor Y, beta subunit (NFYB-1), a subunit of the NF-Y transcriptional complex(6-8), is a crucial regulator of mitochondrial function. Identified in RNA interference (RNAi) screens, NFYB-1 loss leads to perturbed mitochondrial gene expression, reduced oxygen consumption, mitochondrial fragmentation, disruption of mitochondrial stress pathways, decreased mitochondrial cardiolipin levels and abolition of organismal longevity triggered by mitochondrial impairment. Multi-omics analysis reveals that NFYB-1 is a potent repressor of lysosomal prosaposin, a regulator of glycosphingolipid metabolism. Limiting prosaposin expression unexpectedly restores cardiolipin production, mitochondrial function and longevity in the nfyb-1 background. Similarly, cardiolipin supplementation rescues nfyb-1 phenotypes. These findings suggest that the NFYB-1-prosaposin axis coordinates lysosomal to mitochondria signalling via lipid pools to enhance cellular mitochondrial function and organismal health.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available