4.6 Article

Identification of failure slip surfaces for landslide risk assessment using smoothed particle hydrodynamics

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/17499518.2019.1602877

Keywords

Smoothed particle hydrodynamics; finite element method; finite difference method; shear strength reduction method; landslide risk assessment

Funding

  1. Research Grants Council of the Hong Kong Special Administrative Region, China [8779012 (T22603/15N)]
  2. National Natural Science Foundation of China [51778313]

Ask authors/readers for more resources

Location of failure slip surfaces plays a critical role in landslide risk assessment and mitigation, particularly for unstable slopes, because it is a key input to design of stabilisation measures for unstable slopes and it determines the volume of the sliding soil mass (i.e. landslide consequence). The failure slip surfaces in the numerical analysis (e.g. finite element/different method, FEM/FDM) are often identified using shear strength reduction (SSR) method. A careful examination of FEM results showed that, although the SSR method performs well for stable slopes, it might provide misleading results for unstable slopes. To properly locate failure slip surfaces for unstable slopes, this paper presents a particle-based numerical method called smoothed particle hydrodynamics (SPH), which is mesh-free, immune to the mesh distortion problem in FEM/FDM, and able to directly simulate large deformation of soils that occurs during landslides. A series of slope stability analyses is performed using an in-house SPH programme. Failure slip surfaces are properly identified by SPH for both stable and unstable slopes. Furthermore, because SPH provides a spatial distribution of the post-landslide large displacement of soils, the failure slip surfaces can be identified conveniently using soil displacement. A displacement-based criterion is proposed to locate the failure slip surfaces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available