4.7 Article

Frequency dependent multiphase flows on centrifugal microfluidics

Journal

LAB ON A CHIP
Volume 20, Issue 3, Pages 514-524

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9lc00924h

Keywords

-

Ask authors/readers for more resources

The simultaneous flow of gas and liquids in large scale conduits is an established approach to enhance the performance of different working systems under critical conditions. On the microscale, the use of gas-liquid flows is challenging due to the dominance of surface tension forces. Here, we present a technique to generate common gas-liquid flows on a centrifugal microfluidic platform. It consists of a spiral microchannel and specific micro features that allow for temporal and local control of stratified and slug flow regimes. We investigate several critical parameters that induce different gas-liquid flows and cause the transition between stratified and slug flows. We have analytically derived formulations that are compared with our experimental results to deliver a general guideline for designing specific gas-liquid flows. As an application of the gas-liquid flows in enhancing microfluidic systems' performance, we show the acceleration of the cell growth of E. coli bacteria in comparison to traditional culturing methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available