4.8 Article

Stabilizing sulfur vacancy defects by performing click chemistry of ultrafine palladium to trigger a high-efficiency hydrogen evolution of MoS2

Journal

NANOSCALE
Volume 12, Issue 18, Pages 9943-9949

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0nr01693d

Keywords

-

Funding

  1. NSFC [21501096]
  2. Natural Science Foundation of Jiangsu [BK20150086]
  3. Foundation of the Jiangsu Education Committee [15KJB150020]
  4. Six Talent Peaks Project in Jiangsu Province [JY-087]
  5. Innovation Project of Jiangsu Province
  6. Excellent Science and Technology Innovation Group of Jiangsu Province
  7. Foundation of the Nanjing Xiaozhuang University [2019NXY20]

Ask authors/readers for more resources

Defect engineering is widely applied in transition metal dichalcogenides to produce high-purity hydrogen. However, the instability of vacancy states on catalysis still remains a considerable challenge. Here, our first-principles calculations showed that, by optimizing the asymmetric S vacancy in the highly asymmetric 1T ' crystal of layered bitransition metal dichalcogenides (Co-MoS2) in light of Pd modulation, the relative amount of metastable phase and the quantity of active sites in the structure can be reduced and increased, respectively, leading to a further boosted hydrogen evolution reaction (HER) activity toward layered bi-transition metal dichalcogenides. Thus, we then used a click chemistry strategy to make such a catalyst with engineered unsaturated sulfur edges via a strong coupling effect between ultrafine Pd ensembles and Co-MoS2 nanosheets. As expected, the Pd-modulated Co-MoS2 nanosheets exhibited a very low overpotential of 60 mV at 10 mA cm(-2) with a small Tafel slope (56 mV dec(-1)) for the HER in 1.0 M PBS, comparable to those of commercial Pt/C. In addition, their high HER activity was retained in acidic and alkaline conditions. Both the theoretical and experimental results revealed that Pd ensembles can efficiently activate and stabilize the inert basal plane S sites during HER processes as a result of the formation of Pd-S in Co-MoS2. This work not only provides a deeper understanding of the correlation between defect sites and intrinsic HER catalytic properties for transition metal chalcogenide (TMD)-based catalysts, but also offers new insights into better designing earth-abundant HER catalysts displaying high efficiency and durability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available