4.6 Article

General approach for constructing Hamiltonians for nonadiabatic holonomic quantum computation

Journal

PHYSICAL REVIEW A
Volume 101, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.101.062306

Keywords

-

Funding

  1. National Natural Science Foundation of China [11775129]

Ask authors/readers for more resources

The main challenges in achieving high-fidelity quantum gates are to reduce the influence of control errors caused by imperfect Hamiltonians and the influence of decoherence caused by environment noise. To overcome control errors, a promising proposal is nonadiabatic holonomic quantum computation, which has attracted much attention in both theories and experiments. While the merit of holonomic operations resisting control errors has been well exploited, an important issue following is how to shorten the evolution time needed for realizing a holonomic gate so as to avoid the influence of environment noise as much as possible. In this paper, we put forward a general approach of constructing Hamiltonians for nonadiabatic holonomic quantum computation, which makes it possible to minimize the evolution time and might open a new horizon for the realistic implementation of nonadiabatic holonomic quantum computation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available