4.6 Article Proceedings Paper

Determining Proton Transport in Pseudo Catalyst Layers Using Hydrogen Pump DC and AC Techniques

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 167, Issue 8, Pages -

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1945-7111/ab927d

Keywords

-

Funding

  1. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) [DE-EE0007650]
  2. DOE Office of Science [DEAC02-06CH11357]

Ask authors/readers for more resources

Optimizing electrode morphology with a more uniform ionomer distribution is key to reducing ohmic losses and increasing electrocatalyst utilization in polymer electrolyte fuel cells (PEFCs). Inherent ionomer conductivity, volume fraction and tortuosity determine effective ionic conductivity. We use hydrogen pump (HP) method to measure effective ionic conductivity of a pseudo catalyst layer (PCL) comprised of Vulcan XC-72 carbon black and 3M 825 EW ionomer with ionomer to carbon (I/C) ratios of 0.6, 1 and 1.4 and relative humidity (RH) range of 50 to 120%. These direct current (DC) experiments are then compared with electrochemical impedance spectroscopy (EIS). Both DC and EIS methods show good agreement, indicating that EIS can be used as an alternative to DC method in HP experiment. Ionic conductivity for PCL with I/C of 1 and 1.4 was found to be about one order of magnitude higher than I/C of 0.6 for most of the RH range. At 90% RH tortuosities for I/C = 1 and 1.4 were close to 1, whereas tortuosity for I/C = 0.6 was 3. With decrease in relative humidity tortuosities increased linearly and at 50% relative humidity a PCL with I/C = 0.6 had the highest tortuosity of 6.1. (C) 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available