4.7 Review

Comparison and integration of computational methods for deleterious synonymous mutation prediction

Journal

BRIEFINGS IN BIOINFORMATICS
Volume 21, Issue 3, Pages 970-981

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/bib/bbz047

Keywords

deleterious synonymous mutation; prediction model; ensemble learning; machine learning

Funding

  1. National Natural Science Foundation of China [61672037, 11835014, 61873001]
  2. Anhui Provincial Outstanding Young Talent Support Plan [gxyqZD2017005]
  3. Young Wanjiang Scholar Program of Anhui Province
  4. Recruitment Program for Leading Talent Team of Anhui Province

Ask authors/readers for more resources

Synonymous mutations do not change the encoded amino acids but may alter the structure or function of an mRNA in ways that impact gene function. Advances in next generation sequencing technologies have detected numerous synonymous mutations in the human genome. Several computational models have been proposed to predict deleterious synonymous mutations, which have greatly facilitated the development of this important field. Consequently, there is an urgent need to assess the state-of-the-art computational methods for deleterious synonymous mutation prediction to further advance the existing methodologies and to improve performance. In this regard, we systematically compared a total of 10 computational methods (including specific method for deleterious synonymous mutation and general method for single nucleotide mutation) in terms of the algorithms used, calculated features, performance evaluation and software usability. In addition, we constructed two carefully curated independent test datasets and accordingly assessed the robustness and scalability of these different computational methods for the identification of deleterious synonymous mutations. In an effort to improve predictive performance, we established an ensemble model, named Prediction of Deleterious Synonymous Mutation (PrDSM), which averages the ratings generated by the three most accurate predictors. Our benchmark tests demonstrated that the ensemble model PrDSM outperformed the reviewed tools for the prediction of deleterious synonymous mutations. Using the ensemble model, we developed an accessible online predictor, PrDSM, available at http://bioinfo.ahu.edu.cn:8080/PrDSM/. We hope that this comprehensive survey and the proposed strategy for building more accurate models can serve as a useful guide for inspiring future developments of computational methods for deleterious synonymous mutation prediction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available