4.7 Article

Removal of phosphorus and nitrogen in sediments of the eutrophic Stockholm archipelago, Baltic Sea

Journal

BIOGEOSCIENCES
Volume 17, Issue 10, Pages 2745-2766

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/bg-17-2745-2020

Keywords

-

Funding

  1. Havsoch vattenmyndigheten [DNR 1960-2018]
  2. European Research Council
  3. FORMAS (BONUS COCOA project) [2112932-1]
  4. Dutch Ministry of Education, Culture and Science (program of the Netherlands Earth System Science Centre)
  5. Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Vici grant) [865.13.005]
  6. European Research Council [278364]

Ask authors/readers for more resources

Coastal systems can act as filters for anthropogenic nutrient input into marine environments. Here, we assess the processes controlling the removal of phosphorus (P) and nitrogen (N) for four sites in the eutrophic Stockholm archipelago. Bottom water concentrations of oxygen (O-2) and P are inversely correlated. This is attributed to the seasonal release of P from iron-oxide-bound (Fe-oxide-bound) P in surface sediments and from degrading organic matter. The abundant presence of sulfide in the pore water and its high upward flux towards the sediment surface (similar to 4 to 8 mmol m(-2) d(-1)), linked to prior deposition of organic-rich sediments in a low-O-2 setting (legacy of hypoxia), hinder the formation of a larger Fe-oxide-bound P pool in winter. This is most pronounced at sites where water column mixing is naturally relatively low and where low bottom water O-2 concentrations prevail in summer. Burial rates of P are high at all sites (0.03-0.3 mol m(-2) yr(-1)), a combined result of high sedimentation rates (0.5 to 3.5 cm yr(-1)) and high sedimentary P at depth (similar to 30 to 50 mu mol g(-1)). Sedimentary P is dominated by Fe-bound P and organic P at the sediment surface and by organic P, authigenic Ca-P and detrital P at depth. Apart from one site in the inner archipelago, where a vivianite-type Fe(II)-P mineral is likely present at depth, there is little evidence for sink switching of organic or Fe-oxide-bound P to authigenic P minerals. Denitrification is the major benthic nitrate-reducing process at all sites (0.09 to 1.7 mmol m(-2) d(-1)) with rates decreasing seaward from the inner to outer archipelago. Our results explain how sediments in this eutrophic coastal system can remove P through burial at a relatively high rate, regardless of whether the bottom waters are oxic or (frequently) hypoxic. Our results suggest that benthic N processes undergo annual cycles of removal and recycling in response to hypoxic conditions. Further nutrient load reductions are expected to contribute to the recovery of the eutrophic Stockholm archipelago from hypoxia. Based on the dominant pathways of P and N removal identified in this study, it is expected that the sediments will continue to remove part of the P and N loads.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available