4.8 Article

Theoretical study of photoluminescence spectroscopy of strong exciton-polariton coupling in dielectric nanodisks with anapole states

Journal

MATERIALS TODAY CHEMISTRY
Volume 16, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.mtchem.2020.100254

Keywords

Anapole resonance; Excitonic materials; Photonics; Light-matter coupling; Luminescence analysis

Ask authors/readers for more resources

Semiconductor nanoparticles and nanostructures in the strong coupling regime exhibit an intriguing energy scale in the optical frequencies, which is specified by the Rabi splitting between the upper and lower exciton-polariton states. Technically, exciton-polaritons are part-light, part-matter quasiparticles that arise from the strong interaction of excitonic substances and photonic platforms. In this work, using full-wave numerical and theoretical studies, we showed the emergence of strong light-matter coupling between the nonradiating anapole states from an individual semiconductor nanodisk coupled to a J-aggregate fluorescent dye molecule resonating in the visible spectrum. By demonstrating the physical mechanism behind the observed energy splitting for various Lorentzian linewidth of excitonic material, we theoretically confirmed the obtained spectral responses by conducting photoluminescence spectroscopy analysis. The coupling of anapole resonances in semiconductor nanoparticles with excitonic levels can propose interesting possibilities for the control of directional light scattering in the strong coupling limit, and the dynamic tuning of deep-subwavelength light-matter coupled states by external stimuli. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available