4.8 Review

Review on recent advances of carbon based adsorbent for methylene blue removal from waste water

Journal

MATERIALS TODAY CHEMISTRY
Volume 16, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.mtchem.2019.100233

Keywords

Carbon; Biochar; Graphite; Graphene oxide; Adsorption; Removal; Methylene blue

Funding

  1. Institut Teknologi Sepuluh Nopember, Indonesia [D22018]

Ask authors/readers for more resources

The growth in textile and printing industries proven detrimental to the aquatic environment as the industrial waste containing dye seeped into the ecosystem. A high concentration of dye in water possess negative impacts on water ecosystem and harmful to human health. Removal of methylene blue (MB) dye from industrial waste via adsorption pathway has been widely investigated that promised high efficiency of MB removal. This review will summarize researches published from 2008 to 2019 on the removal of MB using carbon adsorbent with focus will be given on the synthesis and modification of carbon-based materials, and the structural properties influencing the performance of MB adsorption. Summary on the type of material used for the synthesis of carbon materials (activated carbon and biochar) will be included from utilization of the naturally occurring carbon sources such as polymers, biomasses and biowastes, and also sucrose and hydrocarbon gases. Modification of carbon materials such as chemical activation and physical activation; surface grafting to form functionalized surfaces; deposition with metal and magnetic nanoparticles via impregnation; and manufacturing of carbon composites will be discussed on the effects to promote MB adsorption and desorption. Another type of carbon adsorbents such as porous carbon; graphitic carbons including graphite, graphene, graphene oxide, and carbon nitride (g-C3N4); and finally nanocarbon in the form of nanotube, nanorod and nanofiber; will be included in the review with details on the synthesis method and the correlation between structural properties and adsorption activity. The regeneration process to increase the life cycle of carbon adsorbent will also be discussed based on two regeneration pathway i.e. a thermal degradation and desorption on MB. Finally the thermodynamics, kinetics, and the adsorption models of MB on carbon adsorbent will be discussed in this review. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available