4.6 Article

Time Course of Wrist Hyper-Resistance in Relation to Upper Limb Motor Recovery Early Post stroke

Journal

NEUROREHABILITATION AND NEURAL REPAIR
Volume 34, Issue 8, Pages 690-701

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/1545968320932135

Keywords

stroke; muscle spasticity; upper extremity; biomechanical phenomena; recovery of function

Funding

  1. European Research Council [291339]
  2. Netherlands Organisation for Health Research and Development (ZonMw) [104003008]
  3. IPSEN
  4. European Research Council (ERC) [291339] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

Background. Patients with an upper limb motor impairment are likely to develop wrist hyper-resistance during the first months post stroke. The time course of wrist hyper-resistance in terms of neural and biomechanical components, and their interaction with motor recovery, is poorly understood. Objective. To investigate the time course of neural and biomechanical components of wrist hyper-resistance in relation to upper limb motor recovery in the first 6 months post stroke. Methods. Neural (NC), biomechanical elastic (EC), and viscous (VC) components of wrist hyper-resistance (NeuroFlexor device), and upper limb motor recovery (Fugl-Meyer upper extremity scale [FM-UE]), were assessed in 17 patients within 3 weeks and at 5, 12, and 26 weeks post stroke. Patients were stratified according to the presence of voluntary finger extension (VFE) at baseline. Time course of wrist hyper-resistance components and assumed interaction effects were analyzed using linear mixed models. Results. On average, patients without VFE at baseline (n = 8) showed a significant increase in NC, EC, and VC, and an increase in FM-UE from 13 to 26 points within the first 6 months post stroke. A significant increase in NC within 5 weeks preceded a significant increase in EC between weeks 12 and 26. Patients with VFE at baseline (n = 9) showed, on average, no significant increase in components from baseline to 6 months whereas FM-UE scores improved from 38 to 60 points. Conclusion. Our findings suggest that the development of neural and biomechanical wrist hyper-resistance components in patients with severe baseline motor deficits is determined by lack of spontaneous neurobiological recovery early post stroke.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available