4.7 Article

On input-to-state stability of rigid-body attitude control with quaternion representation

Journal

Publisher

WILEY
DOI: 10.1002/rnc.3957

Keywords

attitude control; high-gain feedback control; hybrid adaptive control; hybrid systems; input-to-state stability

Funding

  1. National Natural Science Foundation of China [61403031]

Ask authors/readers for more resources

The concept of input-to-state stability (ISS) is important in robust control, as the state of an ISS system subject to disturbances can be stably regulated to a small region around the origin. In this study, the ISS property of the rigid-body attitude system with quaternion representation is thoroughly investigated. It has been known that the closed loop with continuous controllers is not ISS with respect to arbitrarily small external disturbances. To deal with this problem, hybrid proportional-derivative controllers with hysteresis are proposed to render the attitude system ISS. The controller is far from new, but it is investigated in a new aspect. To illustrate the applications of the results about ISS, 2 new robust hybrid controllers are designed. In the case of large bounded time-varying disturbances, the hybrid proportional-derivative controller is designed to incorporate a saturated high-gain feedback term, and arbitrarily small ultimate bounds of the state can be obtained; in the case of constant disturbances, a hybrid adaptive controller is proposed, which is robust against small estimate error of inertia matrix. Finally, simulations are conducted to illustrate the effectiveness of the proposed control strategies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available