4.7 Article

Magnetic control of continuum devices

Journal

INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH
Volume 36, Issue 1, Pages 68-85

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0278364916683443

Keywords

Magnetic catheter; robotic control; Cosserat rod model

Categories

Funding

  1. European Research Counsel [Advanced Grant BOTMED]

Ask authors/readers for more resources

In this paper we apply Cosserat rod theory to catheters with permanent magnetic components that are subject to spatially varying magnetic fields. The resulting model formulation captures the magnetically coupled catheter behavior and provides numerical solutions for rod equilibrium configurations in real-time. The model is general, covering cases with different catheter geometries, multiple magnetic components, and various boundary constraints. The necessary Jacobians for quasi-static, closed-loop control using an electromagnetic coil system and a motorized advancer are derived and incorporated into a visual-feedback controller. We address the issue of solution bifurcations caused by the magnetic field by proposing an additional, stabilizing control method that makes use of system redundancies. We demonstrate the effectiveness of the model by performing 3D tip-position trajectories with root-mean-square distance errors of 2.7 mm in open-loop, 0.30 mm in closed-loop, and 0.42 mm in stabilizing closed-loop modes. The stabilizing controller achieved on average a factor of 1.6 increase in the restoring wrenches for the least stable direction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available