4.6 Article

A novel unsupervised Levy flight particle swarm optimization (ULPSO) method for multispectral remote-sensing image classification

Journal

INTERNATIONAL JOURNAL OF REMOTE SENSING
Volume 38, Issue 23, Pages 6970-6992

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/01431161.2017.1368102

Keywords

-

Funding

  1. National Natural Science Foundation of China [41301465]
  2. Scientific and Technological Development Program of Jilin Province [20170520087JH]
  3. National Key Research and Development Program of China [2017YFB0503602]

Ask authors/readers for more resources

The rapid development of earth observation technology has produced large quantities of remote-sensing data. Unsupervised classification (i.e. clustering) of remote-sensing images, an important means to acquire land-use/cover information, has become increasingly in demand due to its simplicity and ease of application. Traditional methods, such as k-means, struggle to solve this NP-hard (Non-deterministic Polynomial hard) image classification problem. Particle swarm optimization (PSO), always achieving better result than k-means, has recently been applied to unsupervised image classification. However, PSO was also found to be easily trapped on local optima. This article proposes a novel unsupervised Levy flight particle swarm optimization (ULPSO) method for image classification with balanced exploitation and exploration capabilities. It benefits from a new searching strategy: the worst particle in the swarm is targeted and its position is updated with Levy flight at each iteration. The effectiveness of the proposed method was tested with three types of remote-sensing imagery (Landsat Thematic Mapper (TM), Flightline C1 (FLC), and QuickBird) that are distinct in terms of spatial and spectral resolution and landscape. Our results showed that ULPSO is able to achieve significantly better and more stable classification results than k-means and the other two intelligent methods based on genetic algorithm (GA) and particle swarm optimization (PSO) over all of the experiments. ULPSO is, therefore, recommended as an effective alternative for unsupervised remote-sensing image classification.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available