4.5 Article

Experimental impact of magnet and regenerator design on the refrigeration performance of first order magnetocaloric materials

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijrefrig.2016.09.023

Keywords

Magnetocaloric; Refrigeration; First-order; Modeling; Prototype

Ask authors/readers for more resources

The first-order magnetic transition material LaFeSiMn(H) is used to create multi-stage regenerators to investigate the importance of regenerator and magnet design on magnetocaloric refrigeration performance. Aspect ratio, magnetic field strength, particle size, and staging are varied while keeping overall span and material mass at a constant level. Tests carried out on these regenerators show that the regenerator and magnetic systems play a key role in determining the performance of a magnetocaloric refrigerator. A one-dimensional numerical machine model using both measured material data and data reconstructed from a mathematical material model is used to predict test results. The machine model and material model make predictions with less than 5% average error over the range of experimental parameters. (C) 2016 Elsevier Ltd and IIR. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available