4.6 Article

Tunable Electromechanical Liquid Crystal Elastomer Actuators

Journal

ADVANCED INTELLIGENT SYSTEMS
Volume 2, Issue 7, Pages -

Publisher

WILEY
DOI: 10.1002/aisy.202000022

Keywords

actuators; electromechanical strain; liquid crystal elastomers; nanocomposites; scaled-up synthesis

Funding

  1. Laboratory Director's R&D Program of Oak Ridge National Laboratory

Ask authors/readers for more resources

Liquid crystal elastomers (LCE) are soft materials which anisotropically shape morph in response to external stimuli. Herein, a method to produce large-area carbon nanotube-LCE nanocomposite films with exceptional electrostrictive properties is examined. A methodology to produce telechelic precursor oligomeric composites at scale (>100g) is presented along with the continuous casting and photocuring process. The carbon nanotubes are well-aligned and well-dispersed in the films, which exhibit exceptional anisotropic thermomechanical, optical, and thermal shape change characteristics. When an electric field is applied through the film thickness, the material quickly and reversibly contracts along the alignment direction. As an example, a compliant carbon nanotube-LCE film contracts >4% against a 140kPa load, roughly comparable to the blocking force of many natural muscular tissues. Furthermore, it is demonstrated that this tunable contraction is dependent upon the electric field strength, and that the contraction mimics the form function of the input electric field (e.g., a sine wave). These compliant actuators are excellent candidates for incorporation into soft and/or biological systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available