4.7 Article

Mesoscale cyclic crystal plasticity with dislocation substructures

Journal

INTERNATIONAL JOURNAL OF PLASTICITY
Volume 98, Issue -, Pages 1-26

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijplas.2017.06.002

Keywords

-

Funding

  1. Sandia National Laboratories
  2. QuesTek Innovations LLC under Naval Nuclear Laboratory

Ask authors/readers for more resources

Constitutive formulations have increasingly focused on physically-based approaches that are less phenomenological and incorporate information from multiple scales. Most dislocation-based plasticity approaches reflect many-body dislocation physics without considering the length scales introduced by the self-organization of dislocations into mesoscale structures. These structures promote internal stresses or back stresses that are heterogeneous and long-range in nature and play a critical intermediary role in distinguishing the stress at micro- and nano-scales under cyclic loading. We present a framework that explicitly incorporates length-scales and evolution laws associated with mesoscale dislocation substructures such as cells and persistent slip bands (PSBs) in metallic materials under cyclic loading. A physically-based formulation for the back stress based on the Eshelby inclusion formalism is introduced that explicitly depends on morphology of mesoscale dislocation structures. The approach employs material parameters that can be measured or computed at lower length scales to contrast the response of models and experiments for multiple single crystals orientation and polycrystals for a wide range of strains. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available