4.7 Article Proceedings Paper

E-selectin targeted immunoliposomes for rapamycin delivery to activated endothelial cells

Journal

INTERNATIONAL JOURNAL OF PHARMACEUTICS
Volume 548, Issue 2, Pages 759-770

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijpharm.2017.10.027

Keywords

Immunoliposomes; Rapamycin; Targeted delivery; Endothelial cells

Funding

  1. NanoNextNL, a micro and nanotechnology consortium of the government of The Netherlands
  2. [03D.07]

Ask authors/readers for more resources

Activated endothelial cells play a pivotal role in the pathology of inflammatory disorders and thus present a target for therapeutic intervention by drugs that intervene in inflammatory signaling cascades, such as rapamycin (mammalian target of rapamycin (mTOR) inhibitor). In this study we developed anti-E-selectin immunoliposomes for targeted delivery to E-selectin over-expressing tumor necrosis factor-alpha (TNF-alpha) activated endothelial cells. Liposomes composed of 1,2-dipalmitoyl-sn-glycero-3.; hosphocholine (DPPC), Cholesterol, and 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000]-maleimide (DSPE-PEG- Mal) were loaded with rapamycin via lipid film hydration, after which they were further functionalized by coupling N-succinimidyl-S-acetylthioacetate (SATA)-modified mouse anti human E-selectin antibodies to the distal ends of the maleimidyl (Mal)-PEG groups. In cell binding assays, these immunoliposomes bound specifically to TNF-alpha activated endothelial cells. Upon internalization, rapamycin loaded immunoliposomes inhibited proliferation and migration of endothelial cells, as well as expression of inflammatory mediators. Our findings demonstrate that rapamycin-loaded immunoliposomes can specifically inhibit inflammatory responses in inflamed endothelial cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available