4.5 Article

Feasibility study of ECC with self-healing capacity applied on the long-span steel bridge deck overlay

Journal

INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING
Volume 20, Issue 8, Pages 884-893

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/10298436.2017.1356173

Keywords

ECC material; steel bridge deck overlay; self-healing; fatigue life; finite element analysis

Funding

  1. Fundamental Research Funds for the Central Universities [106112017CDJXY200011, 106112017CDJQJ208849]
  2. National Natural Science Foundation of China [51278097]

Ask authors/readers for more resources

Engineered Cementitious Composites (ECC) with high ductility has been recognised to be a high performance and durable alternative to the construction material in civil engineering field. In this paper, ECC material was proposed to be applied on the long-span steel bridge deck overlay. Herein we studied the feasibility of this application via integration of ECC's material performances and stress response of structure using finite element analysis. The results show that ECC material could overcome the brittleness of normal concrete, featuring high tensile strain/deformability capacity under tension/flexural load, as well as higher flexural strength and fatigue life, compared with normal asphalt/concrete materials. Furthermore, the self-healing capacity in ECC helps the crack seal itself, as a result, recovers its water permeability coefficient and resistance to chloride ion penetration to nearly the same level as undamaged ones. By integrating ECC's flexural fatigue behaviour and finite element analysis, it can be concluded that ECC is feasible to be a candidate material for the steel bridge overlay. The application of ECC is expected to greatly extend the service life of steel bridge overlay meanwhile be with thinner thickness compared with normal bridge deck overlay structure, resulting in a more sustainable overlay.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available