4.7 Article

Digital enzyme-linked immunosorbent assays with sub-attomolar detection limits based on low numbers of capture beads combined with high efficiency bead analysis

Journal

LAB ON A CHIP
Volume 20, Issue 12, Pages 2122-2135

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0lc00267d

Keywords

-

Ask authors/readers for more resources

We report the development of digital enzyme-linked immunosorbent assays (ELISAs) based on single molecule arrays (Simoa) with improved sensitivities over conventional digital ELISA, enabling detection of proteins at sub-attomolar concentrations. The improvements in sensitivity were based on using fewer beads to capture the target proteins (<= 5000vs.similar to 500 000 beads) that increased the ratio of molecules to beads, and increasing the fraction of beads that were analyzed (bead read efficiency) from similar to 5% to similar to 50%. Bead read efficiency was increased by: a) improving the loading of beads into arrays of microwells by combining capillary and magnetic forces in a method called magnetic-meniscus sweeping (MMS); b) using a centrifugal washer to minimize bead loss during the assay; and, c) improved optics and image analysis to enable the analysis of more microwells. Using this approach, we developed an assay for IL-17A with a limit of detection (LOD) of 0.7 aM, 437-fold more sensitive than standard digital ELISA. A digital ELISA with improved sensitivity was used to measure IL-17A in 100 serum and plasma samples with 100% detectability, compared to 51% for standard digital ELISA. Low numbers of capture beads yielded improved LODs for IL-12p70 (0.092 aM), p24 (9.1 aM), and interferon alpha (45.9 aM). IL-4 and PSA showed no improvements in sensitivity using fewer beads, primarily due to low antibody loading on beads and increased non-specific binding, respectively. The results were consistent with a kinetic model of binding that showed that combining capture antibodies with high on-rates with high antibodies per bead yields the greatest improvement in sensitivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available