4.7 Article

Double emulsion flow cytometry with high-throughput single droplet isolation and nucleic acid recovery

Journal

LAB ON A CHIP
Volume 20, Issue 12, Pages 2062-2074

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0lc00261e

Keywords

-

Funding

  1. Chem-H CBI fellow (NIH) [T32 GM 120007]
  2. NSF GFRP fellow
  3. Siebel Scholar
  4. NIH [1DP2GM123641]

Ask authors/readers for more resources

Droplet microfluidics has made large impacts in diverse areas such as enzyme evolution, chemical product screening, polymer engineering, and single-cell analysis. However, while droplet reactions have become increasingly sophisticated, phenotyping droplets by a fluorescent signal and sorting them to isolate individual variants-of-interest at high-throughput remains challenging. Here, we present sdDE-FACS (s_ingle d_roplet D_ouble E_mulsion-FACS), a new method that uses a standard flow cytometer to phenotype, select, and isolate individual double emulsion droplets of interest. Using a 130 mu m nozzle at high sort frequency (12-14 kHz), we demonstrate detection of droplet fluorescence signals with a dynamic range spanning 5 orders of magnitude and robust post-sort recovery of intact double emulsion (DE) droplets using 2 commercially-available FACS instruments. We report the first demonstration of single double emulsion droplet isolation with post-sort recovery efficiencies >70%, equivalent to the capabilities of single-cell FACS. Finally, we establish complete downstream recovery of nucleic acids from single, sorted double emulsion dropletsviaqPCR with little to no cross-contamination. sdDE-FACS marries the full power of droplet microfluidics with flow cytometry to enable a variety of new droplet assays, including rare variant isolation and multiparameter single-cell analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available