4.7 Article

Circular orbit of a particle and weak gravitational lensing

Journal

PHYSICAL REVIEW D
Volume 101, Issue 12, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.101.124058

Keywords

-

Ask authors/readers for more resources

The purpose of this paper is twofold. First, we introduce a geometric approach to study the circular orbit of a particle in static and spherically symmetric spacetime based on Jacobi metric. Second, we apply the circular orbit to study the weak gravitational deflection of null and timelike particles based on Gauss-Bonnet theorem. By this way, we obtain an expression of deflection angle and extend the study of deflection angle to asymptotically nonflat black hole spacetimes. Some black holes as lens are considered such as a static and spherically symmetric black hole in the conformal Weyl gravity and a Schwarzschild-like black hole in bumblebee gravity. Our results are consistent with the previous literature. In particular, we find that the connection between Gaussian curvature and the radius of a circular orbit greatly simplifies the calculation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available