4.7 Article

Heavy air pollution with a unique non-stagnant atmospheric boundary layer in the Yangtze River middle basin aggravated by regional transport of PM2.5 over China

Journal

ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume 20, Issue 12, Pages 7217-7230

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-20-7217-2020

Keywords

-

Funding

  1. National Natural Science Foundation of China [41830965, 91744209]
  2. National Key R&D Program Pilot Projects of China [2016YFC0203304]
  3. Postgraduate Research & Practice Innovation Program of Jiangsu Province [KYCX18_1027]

Ask authors/readers for more resources

The regional transport of air pollutants, controlled by emission sources and meteorological factors, results in a complex source-receptor relationship of air pollution change. Wuhan, a metropolis in the Yangtze River middle basin (YRMB) of central China, experienced heavy air pollution characterized by hourly PM2.5 concentrations reaching 471.1 mu g m(-3) in January 2016. To investigate the regional transport of PM2.5 over central eastern China (CEC) and the meteorological impact on wintertime air pollution in the YRMB area, observed meteorological and other relevant environmental data from January 2016 were analyzed. Our analysis presented noteworthy cases of heavy PM2.5 pollution in the YRMB area with unique non-stagnant meteorological conditions of strong northerly winds, no temperature inversion, and additional unstable structures in the atmospheric boundary layer. This unique set of conditions differed from the stagnant meteorological conditions characterized by near-surface weak winds, air temperature inversion, and stable structure in the boundary layer that are typically observed in heavy air pollution over most regions in China. The regional transport of PM2.5 over CEC aggravated PM2.5 levels, thus creating heavy air pollution in the YRMB area. This demonstrates a source-receptor relationship between the originating air pollution regions in CEC and the receiving YRMB region. Furthermore, a backward trajectory simulation using a Flexible Particle dispersion (FLEXPART) Weather Research and Forecasting (WRF) model to integrate the air pollutant emission inventory over China was used to explore the patterns of regional transport of PM2.5 governed by the strong northerly winds in the cold air activity of the East Asian winter monsoon season. It was estimated that the regional transport of PM2.5 from non-local air pollutant emissions contributes more than 65 % of the PM2.5 concentrations to the heavy air pollution in the YRMB region during the study period, revealing the importance of the regional transport of air pollutants over China as a causative factor of heavy air pollution over the YRMB area.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available