4.7 Article

Spatial Distribution Patterns of Root-Associated Bacterial Communities Mediated by Root Exudates in Different Aged Ratooning Tea Monoculture Systems

Journal

Publisher

MDPI
DOI: 10.3390/ijms18081727

Keywords

monoculture; allelochemicals; microbiomes; rhizo-compartments; high-throughput sequence; redundancy analysis (RDA); high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS)

Funding

  1. 948 program from Ministry of Agriculture China [2014-Z36]
  2. National Key Research and Development (R D), China plan [2016YFD0200900]
  3. Major agricultural extension services, Fujian Province, China [KNJ-153015]

Ask authors/readers for more resources

Positive plant-soil feedback depends on beneficial interactions between roots and microbes for nutrient acquisition; growth promotion; and disease suppression. Recent pyrosequencing approaches have provided insight into the rhizosphere bacterial communities in various cropping systems. However; there is a scarcity of information about the influence of root exudates on the composition of root-associated bacterial communities in ratooning tea monocropping systems of different ages. In Southeastern China; tea cropping systems provide the unique natural experimental environment to compare the distribution of bacterial communities in different rhizo-compartments. High performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) was performed to identify and quantify the allelochemicals in root exudates. A high-throughput sequence was used to determine the structural dynamics of the root-associated bacterial communities. Although soil physiochemical properties showed no significant differences in nutrients; long-term tea cultivation resulted in the accumulation of catechin-containing compounds in the rhizosphere and a lowering of pH. Moreover; distinct distribution patterns of bacterial taxa were observed in all three rhizo-compartments of two-year and 30-year monoculture tea; mediated strongly by soil pH and catechin-containing compounds. These results will help to explore the reasons why soil quality and fertility are disturbed in continuous ratooning tea monocropping systems; and to clarify the associated problems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available