3.9 Article

COMPREHENSIVE EXAMINATION OF THE THREE-DIMENSIONAL ROTATING FLOW OF A UCM NANOLIQUID OVER AN EXPONENTIALLY STRETCHABLE CONVECTIVE SURFACE UTILIZING THE OPTIMAL HOMOTOPY ANALYSIS METHOD

Journal

FRONTIERS IN HEAT AND MASS TRANSFER
Volume 14, Issue -, Pages -

Publisher

GLOBAL DIGITAL CENTRAL
DOI: 10.5098/hmt.14.11

Keywords

Rotating flow; Thermal diffusivity; Nanoparticles diffusivity; Hall effects; OHAM

Categories

Ask authors/readers for more resources

This article explores the three-dimensional (3D) rotating flow of Upper Convected Maxwell (UCM) nanoliquid over an exponentially stretching sheet with a convective boundary condition and zero mass flux for the nanoparticles concentration. The impacts of velocity slip and hall current are being considered. The suitable similarity transformations are employed to reduce the governing partial differential equations into ordinary ones. These systems of equations are highly non-linear, coupled and in turn solved by an efficient semi-analytical scheme known as optimal homotopy analysis method (OHAM). The effects of various physical constraints on velocity, temperature, and concentration fields are analyzed graphically and discussed in detail. The impact of hall current is reduced the temperature field whereas increase to the velocity and the concentration fields. The present results are compared with the available results in the literature to check the legitimacy of the present semi-analytical scheme and noted an excellent agreement for limiting cases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available