4.7 Article

Effects of Dl-3-n-butylphthalide on Cerebral Ischemia Infarction in Rat Model by Mass Spectrometry Imaging

Journal

Publisher

MDPI
DOI: 10.3390/ijms18112451

Keywords

dl-3-n-butylphthalide; permanent middle cerebral artery occlusion (pMCAO); matrix-assisted laser desorption time of flight ionization mass spectrometry imaging (MALDI-TOF-MS imaging); metabolites

Ask authors/readers for more resources

Dl-3-n-butylphthalide (NBP) is a drug that is used in the treatment of ischaemic stroke. However, to the best of our knowledge, there are no systematic studies investigating the effects of dl-3-n-butylphtalide on the brain metabolism of small molecules. In this study, we first investigated the effects of dl-3-n-butylphthalide on the spatial distribution of small molecules in the brains of rats with permanent middle cerebral artery occlusion (pMCAO) using matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) imaging. After pMCAO modelling or a sham operation, rats were given four mg/kg of dl-3-n-butylphthalide through the caudal vein or saline once a day for nine days. The degree of neurological deficit in rats was evaluated using the modified neurological severity score (mNSS). MALDI-TOF-MS imaging was used to observe the content and distribution of small molecules related to metabolism during focal cerebral ischaemia. Multiple reaction monitoring (MRM) mode with liquid chromatography tandem mass spectrometry (LC-MS/MS) was used to verify the results obtained from MALDI-TOF-MS imaging. These small molecules were found to be involved in glucose metabolism, ATP metabolism, the glutamate-glutamine cycle, malate aspartate shuttle, oxidative stress, and inorganic ion homeostasis. Of the 13 metabolites identified by MALDI-TOF-MS imaging, seven compounds, ATP, ADP, AMP, GMP, N-acetylaspartic acid, ascorbic acid and glutathione, were further validated by LC-MS/MS. Taken together, these results indicate that dl-3-n-butylphthalide significantly improved ATP metabolism, level of antioxidants, and sodium-potassium ion balance in a rat model of pMCAO.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available