4.7 Article

Influence of species and processing parameters on recovery and content of brain tissue-derived extracellular vesicles

Journal

JOURNAL OF EXTRACELLULAR VESICLES
Volume 9, Issue 1, Pages -

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/20013078.2020.1785746

Keywords

Extracellular vesicles; brain; central nervous system; tissue preparation; post-mortem interval; small RNA sequencing; proteomics; exosomes; neurodegenerative disease

Categories

Funding

  1. Michael J. Fox Foundation for Parkinson's Research
  2. NIH Office of the Director [CA241694]
  3. National Institute of Allergy and Infectious Diseases [AI144997]
  4. National Institute of Mental Health [MH118164]
  5. National Institute on Aging [AG057430]
  6. National Institute on Drug Abuse [DA047807, DA040385]
  7. National Health and Medical Research Council of Australia [GNT1132604]

Ask authors/readers for more resources

Extracellular vesicles (EVs) are involved in a wide range of physiological and pathological processes by shuttling material out of and between cells. Tissue EVs may thus lend insights into disease mechanisms and also betray disease when released into easily accessed biological fluids. Since brain-derived EVs (bdEVs) and their cargo may serve as biomarkers of neurodegenerative diseases, we evaluated modifications to a published, rigorous protocol for separation of EVs from brain tissue and studied effects of processing variables on quantitative and qualitative outcomes. To this end, size exclusion chromatography (SEC) and sucrose density gradient ultracentrifugation were compared as final separation steps in protocols involving stepped ultracentrifugation. bdEVs were separated from brain tissues of human, macaque, and mouse. Effects of tissue perfusion and a model of post-mortem interval (PMI) before final bdEV separation were probed. MISEV2018-compliant EV characterization was performed, and both small RNA and protein profiling were done. We conclude that the modified, SEC-employing protocol achieves EV separation efficiency roughly similar to a protocol using gradient density ultracentrifugation, while decreasing operator time and, potentially, variability. The protocol appears to yield bdEVs of higher purity for human tissues compared with those of macaque and, especially, mouse, suggesting opportunities for optimization. Where possible, perfusion should be performed in animal models. The interval between death/tissue storage/processing and final bdEV separation can also affect bdEV populations and composition and should thus be recorded for rigorous reporting. Finally, different populations of EVs obtained through the modified method reported herein display characteristic RNA and protein content that hint at biomarker potential. To conclude, this study finds that the automatable and increasingly employed technique of SEC can be applied to tissue EV separation, and also reveals more about the importance of species-specific and technical considerations when working with tissue EVs. These results are expected to enhance the use of bdEVs in revealing and understanding brain disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available