4.5 Article

Finding Strategies to Regulate Propagation and Containment of Dengue via Invariant Manifold Analysis

Journal

SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS
Volume 19, Issue 2, Pages 1392-1437

Publisher

SIAM PUBLICATIONS
DOI: 10.1137/20M131299X

Keywords

dengue; Aedes aegypti; Wolbachia; invariant manifolds; slow-fast dynamics; traveling waves; heteroclinic orbits

Funding

  1. MOVECO project (CONICYT-COLCIENCIAS) [MATH-AmSud 18MATH-05]
  2. Proyecto Interno [UTFSM PI-LI-19-06, 2018 PAI77190076]
  3. Proyecto Basal CMM Universidad de Chile
  4. CONICYT Redes [170059]
  5. Proyecto Interno UTFSM [PI-LI-19-06]
  6. CONICYT-PAI Convocatoria Nacional Subvencion a la Instalacion en la Academia Convocatoria [2018 PAI77190076]

Ask authors/readers for more resources

Dengue, zika, and chikungunya are viruses transmitted to humans by Aedes aegypti mosquitoes. In the absence of medical treatments and efficient vaccines, one of the control methods is to introduce Aedes aegypti mosquitoes infected by the bacterium Wolbachia into a population of wild (uninfected) mosquitoes. The goal consists in achieving population replacement in finite time by driving the population of wild females towards extinction, while keeping Wolbachia-infected mosquitoes alive and persistent. We consider a two-dimensional competition model between wild Aedes aegypti female mosquitoes and those infected with Wolbachia. Our goal is to examine the basin of attraction of a desired equilibrium state which represents the population replacement. For this, we study how the stable manifold that forms the basin boundary of interest changes under parameter variation. To achieve this, we first combine tools from dynamical systems and geometric singular perturbation theory with numerical continuation methods. This allows us to present a strategy to get the desired population replacement with a minimum number of released infected mosquitoes in a human intervention by choosing an appropriate combination of initial conditions and parameter values. Second, we characterize traveling waves in a spatiotemporal extension of our model. To this aim, we propose a new method to calculate and visualize 3D invariant manifolds of an associated 4D dynamical system. In this way, we find uncountably many heteroclinic connections between stationary states (each associated with a wave front exhibiting the desired population replacement) as intersections of global invariant manifolds in the 4D phase space.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available