4.1 Article

Comparison of portable and benchtop GC-MS coupled to capillary microextraction of volatiles (CMV) for the extraction and analysis of ignitable liquid residues

Journal

FORENSIC CHEMISTRY
Volume 19, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.forc.2020.100240

Keywords

Capillary Microextraction of Volatiles (CMV); Gas chromatography-mass spectrometry (GC-MS); Fire Debris Analysis; Ignitable Liquid Residues (ILRs); TRIDION-9 (T9); Portable GC-MS

Funding

  1. Forensic Technology Center of Excellence (FTCoE) at the Research Triangle Institute (RTI), USA [2016-MU-BXK110]
  2. National Science Foundation

Ask authors/readers for more resources

A novel extraction device, capillary microextraction of volatiles (CMV) was coupled to a TRIDION-9 GC-MS with a needle trap (NTD) and evaluated for the analysis of ignitable liquids fire debris. The performance of the TRIDION-9 was compared to a benchtop GC-MS using CMV. A system detection limit of similar to 10 ng for each of 20 key ignitable liquid residue (ILR) compounds was determined for the T9 GC-MS. Dynamic headspace sampling of simulated ILRs was performed in closed and open-air systems. Closed system evaluations the CMV/NTD technique resulted in extraction performance similar to the CMV alone; however, ILR analysis on the T9 was impacted by limited chromatographic resolution. Compound identification was possible for 14 out of the 20 selected compounds on the T9 when 1 mu L of a 1% standard accelerant mixture (SAM) was sampled, compared to 17 compounds on the benchtop GC-MS for the same mass loading. Open-air sampling with a modified vapor source resulted in the retention of most compounds with as low as 5 min. sampling, and equilibrium concentrations were reached after 10 min. No significant differences were observed between CMV and CMV/NTD sampling suggesting that the combined technique does not suffer from affinity bias. While the potential of the CMV/NTD extraction coupled to a T9 GC-MS for fire debris analysis was limited by the chromatographic resolution of the instrument, this study serves as proof of concept for the CMV's potential for the extraction of ILRs in combination with portable GC-MS systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available