4.7 Article

Nickel-graphene nanocomposite with improved electrochemical performance for La0.7Mg0.3(Ni0.85Co0.15)3.5 electrode

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 42, Issue 17, Pages 12458-12466

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2017.03.197

Keywords

Ni-reduced graphene oxide; nanocomposite; Electrochemical performance; AB(3.5) alloy electrode

Funding

  1. National Natural Science Foundation of China [51571065, 51401055, 51271061]
  2. Natural Science Foundation of Guangxi Province [2015GXNSFBA139213]
  3. Key Laboratory of Guangxi for Nonferrous Metals and Materials Processing Technology [12-A-01-07]

Ask authors/readers for more resources

A Ni-rGO nanocomposite was synthesized by a hydrothermal process and La0.7Mg0.3(Ni0.85Co0.15)(3,5), an AB(3.5)-type hydrogen storage alloy, was prepared by magnetic levitation melting under argon atmosphere. The influences of the Ni-rGO nanocomposite on the hydrogen storage and electrochemical performance of the La0.7Mg0.3(Ni0.85Co0.15)(3.5) alloy were investigated via pressure composition isotherms (PCT) and electrochemical measurements. The PCT curves revealed that the addition of the Ni-rGO nanocomposite improved the reversibility of hydrogen absorption and desorption for the La0.7Mg0.3(Ni0.85Co0.15)(3.5) alloy. The electrochemical measurements showed that the electrochemical impedance of the La0.7Mg0.3(Ni0.85Co0.15)(3.5) alloy electrode was significantly reduced, the high rate dischargeability, HRD1200, increased from 60% to 86%, the limiting current density, I-L, increased from 1216.7 mA.g(-1) to 2287.6 mA.g(-2), and the hydrogen diffusion coefficient, D, increased with the added Ni-rGO nanocomposite. These improvements to the electrochemical performance are mainly attributed to the Ni-rGO framework, with the large specific surface area of the graphene, and to the high conductivity of metal nickel. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available