4.7 Article

Modeling and simulation of a proton exchange membrane fuel cell using computational fluid dynamics

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 42, Issue 34, Pages 21944-21954

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2017.07.098

Keywords

Proton exchange membrane; Fuel cell; Mathematical model; CFD model

Ask authors/readers for more resources

An isothermal, three dimensional, single phase model was presented to evaluate a proton exchange membrane fuel cell (PEMFC) with serpentine flow. The mass, momentum and electrochemical equations were solved simultaneously for the steady state condition using computational fluid dynamics (CFD) software based on the finite element method. The model considered reactions as mass source/sink terms, and electron transport in the catalyst layers and GDLs. To validate the model, the numerical results were compared to the experimental data collected from the fabricated membrane electrode assemblies. The exchange current density parameter of the catalysts was fitted by the model to calibrate the results. The model showed good agreement with experimental data and predicted a higher current density for the catalyst with a higher surface area and Pt content. The oxygen, hydrogen and water mass fraction distribution, velocity magnitude and pressure distribution were estimated by the model. Moreover, the effect of pressure and temperature, as two important operating conditions, on the current density was predicted by the validated model. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available