4.7 Article Proceedings Paper

Investigation of a new solar greenhouse drying system for peppers

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 42, Issue 13, Pages 8818-8826

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2016.11.180

Keywords

Solar greenhouse drier; Solar air collector; TRNSYS; Simulation

Ask authors/readers for more resources

Solar drying is the oldest preservation technique of agricultural products using several types of solar crop dryers based mostly on solar energy, which is abundant, renewable and sustainable. This study aimed to modeling a new solar greenhouse drying system (SGDS) for the drying of red peppers. The proposed mixed-mode (SGDS) consists of two main parts, namely a flat plate solar air collector and an experimental greenhouse. A mathematical model is developed using the TRNSYS simulation program to predict the change in the drying kinetics during the drying process under our proposed (SGDS). The experimental part consisted in testing the solar air collector to investigate its performance. The test showed that this solar air collector has a good performance; its efficiency varies between 0, 5 and 0, 65. The model was validated with the observed data and showed good agreement with experimental values. The influence of the area of the product to be dried, airflow rate and collector area, on moisture content changes, air temperature and humidity inside the greenhouse was studied. For the case study of this SGDS, the results obtained from simulation showed that the optimum values of area of the product to be dried, the exhaust airflow rate and the collector area were found to be 40 m(2), 250 kg/h and 2 m(2), respectively. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available