4.6 Article

Gold nanoparticle-engineered electrochemical aptamer biosensor for ultrasensitive detection of thrombin

Journal

ANALYTICAL METHODS
Volume 12, Issue 29, Pages 3729-3733

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ay01163k

Keywords

-

Funding

  1. Scientific Research Project of Beijing Educational Committee [KM202010028007]
  2. Beijing Natural Science Foundation Program [2192010]

Ask authors/readers for more resources

In order to obtain a lower detection limit in electrochemical detection, the choice of signal amplification strategy is of great importance. In this work, we describe an electrochemical sandwich aptasensor based on a signal amplification system involving two thrombin (TB) aptamers (TBA1 and TBA2), gold nanoparticles (AuNPs) as aptamer carriers, and [Ru(NH3)(6)](3+)for signal conversion. In the presence of the target thrombin, TBA1 and TBA2 specifically bind to TB, and the TBA1-TB-TBA2 complexes cause the formation of a sandwich structure, meaning more [Ru(NH3)(6)](3+)can be adsorbed on the negatively charged phosphate backbone of the aptamers, resulting in an increase in the differential pulse voltammetry (DPV) current. Under optimal conditions, the aptasensor exhibited a linear range of 1 fM to 6 pM and a limit of detection of 0.1429 fM (S/N = 3) for TB. The proposed aptasensor displayed an excellent selectivity and reproducibility. Importantly, the aptasensor was capable of detecting TB in serum samples successfully.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available