3.9 Article

A Machine Learning Integrated Portfolio Rebalance Framework with Risk-Aversion Adjustment

Journal

JOURNAL OF RISK AND FINANCIAL MANAGEMENT
Volume 13, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/jrfm13070155

Keywords

portfolio optimization; Mean-Gini model; risk-aversion coefficient; machine learning models; technical indicators; information fusion

Ask authors/readers for more resources

We propose a portfolio rebalance framework that integrates machine learning models into the mean-risk portfolios in multi-period settings with risk-aversion adjustment. In each period, the risk-aversion coefficient is adjusted automatically according to market trend movements predicted by machine learning models. We employ Gini's Mean Difference (GMD) to specify the risk of a portfolio and use a set of technical indicators generated from a market index (e.g., S&P 500 index) to feed the machine learning models to predict market movements. Using a rolling-horizon approach, we conduct a series of computational tests with real financial data to evaluate the performance of the machine learning integrated portfolio rebalance framework. The empirical results show that the XGBoost model provides the best prediction of market movement, while the proposed portfolio rebalance strategy generates portfolios with superior out-of-sample performances in terms of average returns, time-series cumulative returns, and annualized returns compared to the benchmarks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available