4.7 Article

Personalized travel route recommendation using collaborative filtering based on GPS trajectories

Journal

INTERNATIONAL JOURNAL OF DIGITAL EARTH
Volume 11, Issue 3, Pages 284-307

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/17538947.2017.1326535

Keywords

Historical GPS trajectories; personalized travel route recommendation; collaborative filtering; naive Bayes model

Funding

  1. Natural Sciences and Engineering Research Council of Canada
  2. National Natural Science Foundation of China [11271351]

Ask authors/readers for more resources

Travelling is a critical component of daily life. With new technology, personalized travel route recommendations are possible and have become a new research area. A personalized travel route recommendation refers to plan an optimal travel route between two geographical locations, based on the road networks and users' travel preferences. In this paper, we define users' travel behaviours from their historical Global Positioning System (GPS) trajectories and propose two personalized travel route recommendation methods - collaborative travel route recommendation (CTRR) and an extended version of CTRR (CTRR+). Both methods consider users' personal travel preferences based on their historical GPS trajectories. In this paper, we first estimate users' travel behaviour frequencies by using collaborative filtering technique. A route with the maximum probability of a user's travel behaviour is then generated based on the naive Bayes model. The CTRR+ method improves the performances of CTRR by taking into account cold start users and integrating distance with the user travel behaviour probability. This paper also conducts some case studies based on a real GPS trajectory data set from Beijing, China. The experimental results show that the proposed CTRR and CTRR+ methods achieve better results for travel route recommendations compared with the shortest distance path method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available