4.8 Article

Reduced-Coupling Coestimation of SOC and SOH for Lithium-Ion Batteries Based on Convex Optimization

Journal

IEEE TRANSACTIONS ON POWER ELECTRONICS
Volume 35, Issue 11, Pages 12332-12346

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPEL.2020.2984248

Keywords

Convex optimization; cost function; decoupling; electrified vehicle (EV); lithium-ion battery (LIB); state of charge (SOC); state of health (SOH)

Ask authors/readers for more resources

Model-based state-of-charge (SOC) and state-of-health (SOH) estimation for lithium-ion batteries has been widely applied in electrified vehicles, while the SOC and SOH estimators are highly coupled and nonlinear in conventional techniques. This leads to a bulky design of observer network and complicates the stability analyses. In this article, a new reduced-decoupling SOC and SOH coestimation algorithm based on convex optimization is proposed. This scheme estimates the battery SOC from the battery model and does not require the classic Coulomb-counting method. Therefore, it can decouple the capacity estimation from the SOC estimator and reduce the strong interaction existing in conventional coestimation methods. Besides, all state variables can be solved together by one estimator, which is straightforward and avoids the complicated observer network. Owing to the decoupling design, the stability of the proposed method becomes more intuitive and can be always guaranteed according to the convexity analysis without using other stabilizing approaches. In consequence, a weak-interaction and robust coestimation algorithm of SOC and SOH can be realized by the proposed technique. The experiments on a 5.4-Ah lithium polymer battery are implemented to validate the feasibility of the algorithm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available