4.8 Article

A Small-AC-Signal Injection-Based Decentralized Secondary Frequency Control for Droop-Controlled Islanded Microgrids

Journal

IEEE TRANSACTIONS ON POWER ELECTRONICS
Volume 35, Issue 11, Pages 11634-11651

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPEL.2020.2983878

Keywords

Frequency control; Microgrids; Voltage control; Inverters; Regulators; Switches; Decentralized secondary control; droop control; frequency restoration; microgrid; real power sharing; signal injection

Funding

  1. National Natural Science Foundation of China [51437007]

Ask authors/readers for more resources

In an islanded microgrid composed of droop-controlled parallel inverters, the system frequency endures deviations as the load changes. To compensate for frequency deviation without involving communication infrastructures among distributed generators (DGs), the proportional-integral regulator based secondary frequency control (PI-SFC) method has been proposed in the literature. However, PI-SFC may incur real power-sharing errors because the integrator accumulates disturbances and noise in each DG, leading to different compensation values of nominal real power. To achieve frequency restoration while maintaining equal real power sharing among DGs, this article proposes a small-ac-signal injection-based secondary frequency control (SACS-SFC) method, which is implemented by injecting an additional ac signal into the output voltage of each DG. Furthermore, a droop relation between the frequency of the injected SACS and the compensation value of nominal real power is innovatively established to trim the output real power of each DG to be equal. Frequency deviations caused by primary droop control are thus eliminated, and even real power sharing can be maintained among DGs. Moreover, the control parameters of the proposed SACS-SFC are comprehensively designed via steady state and dynamic model of the system. Simulation and experimental results demonstrate the effectiveness of the proposed method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available