3.8 Proceedings Paper

Enhancing the Thermal properties of Organic Phase Change Material (palmitic acid) by doping MXene Nanoflakes

Publisher

AMER INST PHYSICS
DOI: 10.1063/5.0001366

Keywords

-

Funding

  1. Sunway University [STR-RCTR-RCNMET-001-2019]
  2. Taylor's University through its TAYLOR'S RESEARCH SCHOLARSHIP Programme

Ask authors/readers for more resources

Thermal energy storage (TES) is gaining more attention in the solar energy application for production of power round the clock. Phase change materials (PCMs) are a promising solution for TES due to their high energy storage density. However, the PCM materials suffer from low thermal conductivity which results in the low conversion efficiency of solar energy. In this study a novel nanocomposite of palmitic acid/Ti3C2 MXene is synthesised using two-step process. Melting point and enthalpy measurement were conducted using differential scanning calorimeter (DSC). Thermal stability and degradation temperature are studied by the results obtained by thermogravimetric analysis (TGA) up to 300 degrees C. The functional group and possibility of chemical rearrangement of doping MXene nanoflakes are identified using FT-IR analysis. The nanocomposite showed enhancement in enthalpy by 4.34% and thermal conductivity by 14.45% indicating that the composite is suitable for TES application. FT-IR spectra of the composite revealed that there is no chemical reaction occurring between palmitic acid (PA) and MXene making it more stable composite. Based on the DSC and TGA results enthalpy and thermal conductivity of the composite has improved by doping MXene nanoflakes into Palmitic PCM making it suitable candidate for solar thermal and solar photovoltaic thermal application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available