4.7 Article

Athermal behavior of core-shell particles in nanocrystalline Cu-Ta

Journal

SCRIPTA MATERIALIA
Volume 188, Issue -, Pages 69-73

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.scriptamat.2020.07.014

Keywords

Nanocrystalline materials; Mechanical alloying; Thermal stability; Scanning transmission electron microscopy; Core-shell particles

Funding

  1. W.M. Keck Foundation - U.S. Army Combat Capabilities Development Command Army Research Laboratory [W911NF-19-2-0009]

Ask authors/readers for more resources

Nanocrystalline Cu-Ta is among the most successfully developed nanostructured alloys involving microstructural design, synthesis, characterization, and testing. However, the interplay of direct and indirect thermal stability mechanisms is still unclear. In this work, mechanically alloyed Cu-10at.%Ta was characterized with atomic-resolution electron microscopy to identify thermal stability mechanisms. A new mechanism involving athermal core-shell particles that were coarsening resistant was discovered after annealing between 100-800 degrees C up to 1000 h. Evidence suggests that oxide amorphous shells decreased the phase boundary energy thereby reducing the thermodynamic driving force for particle growth and indirectly maximizing thermal stability of Cu(Ta) grains. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available