4.7 Article

Physicochemical characteristics and in vitro digestibility of potato and cassava starches under organic acid and heat-moisture treatments

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.ijbiomac.2016.11.074

Keywords

Heat-moisture treatment; Starch digestibility; Citric acid

Funding

  1. National Foundation for Science and Technology Development (NAFOSTED) of Vietnam [106-NN.99-2015.91]

Ask authors/readers for more resources

A combination of acid (citric acid or lactic acid) and heat-moisture treatment was used to modify cassava and potato starches in this study. Changes in physicochemical properties and in vitro digestibility of the treated starches were investigated. The cassava starch contained 17.0% amylose and possessed A-type crystallinity, whereas the potato starch had 27.4% amylose and possessed B-type crystallinity. After acid and heat-moisture treatment, the crystalline structure of the cassava starch remained unchanged (A type), while the crystalline structure of the potato starch changed from B type to the C (B + A) type. The acid and heat-moisture treatment increased gelatinization temperature, peak and final viscosities of cassava starch but reduced peak and breakdown viscosities of the potato starch. After acid and heat-moisture treatment, rapid digestible starch contents of the treated cassava and potato starches were significantly reduced. However, resistant starch (RS) contents of the treated starches significantly increased as compared to the native starches. Citric acid was found to have high impact on formation of RS in starches. The RS contents of cassava and potato starches obtained under the citric acid and heat-moisture treatment were 40.2% and 39.0%, respectively, two times higher than those of the native starches. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available