4.7 Article

Comparative effects of untreated and 3-methacryloxypropyltrimethoxysilane treated ZnO nanoparticle reinforcement on properties of polylactide-based nanocomposite films

Journal

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
Volume 101, Issue -, Pages 1041-1050

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijbiomac.2017.03.176

Keywords

Polylactide; ZnO nanoparticles; 3-Methacryloxypropyltrimethoxysilane; Rheology; Anti-UV properties; Active packaging

Funding

  1. Kuwait Foundations for Advancement of Sciences (KFAS)
  2. Kuwait Institute for Scientific Research [FB087C]

Ask authors/readers for more resources

Polylactide (PLA) nanocomposites characterized by antimicrobial properties are gaining increasing attention for food packaging. In this contribution, the PLA based nanocomposite films with multifunctional end-use properties were achieved by incorporating ZnO nanoparticles (NPs) [untreated: ZnO(UT) and 3-methacryloxypropyltrimethoxysilane treated: ZnO(ST)] into polymer matrix via solvent casting method. The ZnO(ST) prevented the degradation of PLA at higher temperature and improved the mechanical property. Color, transparency, and anti-UV properties of composite films were influenced by the incorporation of ZnO NPs. Contrary to untreated ZnO, the treated NPs were more effective in enhancing the tortuosity of the diffusive path for the oxygen molecules to diffuse through the film. The glass transition (T-g) and crystallization (T-c) temperatures of composites were improved by the addition of ZnO, whereas a higher T-g was recorded for ZnO(ST) loaded films. XRD demonstrated the change in crystallinity of the films with NPs addition. Nanoparticles well distributed in the composite films as observed through SEM however spots of agglomeration were observed for PLA/ZnO(UT) films. Developed films especially incorporated with ZnO(ST) were found to be active against both Gram-negative (Salmonella Typhimurium) and Gram-positive (Listeria monocytogenes) bacteria. Therefore, PLA/ZnO nanocomposite films could be considered as environment-friendly active packaging material for food preservation. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available