4.7 Article

Laminating of chemically modified silan based nanosols for advanced functionalization of cotton textiles

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.ijbiomac.2016.10.082

Keywords

Silan compounds; Silver nanoparticles; Heat transfer; Antibacterial activity; Cellulosic materials

Funding

  1. Science and Technology Development Fund (STDF), Egypt [5473]

Ask authors/readers for more resources

As per to silver nanoparticles/silicon dioxide nanoparticles (SiO2@AgNPs) properties (e.g., conductivity, reactant, adsorption, detachment and antimicrobial), many researchers were focused on its preparation technique. A core/shell of silicon dioxide and silver nanoparticles (SiO2@AgNPs) has been prepared by facile route. The as synthesized core/shell nanoparticles were chemically modified with two different silan compounds, nominated, vinyltriethoxysilan (VTEOS) and (3-aminopropyl)trimethoxysilan (APTEOS). World class facilities such as XRD, FT-IR, TEM, Particle size, DLS, SEM techniques were utilized for the nanoparticles characterization. The nanoparticulate system comprises SiO2@AgNPs, SiO2@AgNPs/APTEOS were applied to cotton fabric using butantetracarboxylic acid (BTCA) as across-linking agent. While UV irradiation by photo initiator was used as crosslinking agent for SiO2@AgNPs/VTEOS on cotton fabrics. The Treated cotton fabrics were evaluated for their surface morphology and heat transfer ability as well as antibacterial activity. The obtained data prove that the core/shell was successfully prepared, with AgNPs in core. In addition, both silan compounds (APTEOS, VTEOS) were successfully reacted with the outer shell SiO2. The results declared also that the treated fabrics exhibit a good antibacterial activity as well as good thermal properties. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available