4.8 Review

A Mini-Review: MXene composites for sodium/potassium-ion batteries

Journal

NANOSCALE
Volume 12, Issue 30, Pages 15993-16007

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0nr04111d

Keywords

-

Funding

  1. National Natural Science Foundation of China [21773188]
  2. Program for Innovation Team Building at Institutions of Higher Education in Chongqing [XDJK2019AA002]

Ask authors/readers for more resources

MXenes, as a new type of two-dimensional layered structure material, have attracted much attention. MXenes have high electronic conductivity, a large specific area, excellent mechanical properties and a unique layered structure and have been extensively used in energy storage, adsorption, catalysis and other fields. In recent years, Mxenes and their composite materials have been widely used in the field of secondary batteries. Although oxides, sulfides and other materials have high capacity, there are problems such as low conductivity, volume expansion in the reaction process, poor cycling stability,etc. Therefore, building composite materials with MXenes can not only improve the capacity but also enhance the electronic conductivity of the materials, effectively alleviate volume expansion in the reaction process, and achieve better electrochemical performance. This article reviews the latest research status of MXenes, the synthesis methods, properties and application of MXenes and their composite materials in sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs), briefly introduces the research background of SIBs, PIBs and MXenes, and focuses on the application research of MXene composite materials in SIBs and PIBs, including classification according to sulfide, oxide and carbon materials. Finally, the development and application prospects of MXenes and their composite materials are summarized.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available