4.5 Article

Learning Gaussian graphical models with fractional marginal pseudo-likelihood

Journal

INTERNATIONAL JOURNAL OF APPROXIMATE REASONING
Volume 83, Issue -, Pages 21-42

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ijar.2017.01.001

Keywords

Approximate likelihood; Fractional Bayes factors; Model selection; Structure learning; Gaussian graphical models

Ask authors/readers for more resources

We propose a Bayesian approximate inference method for learning the dependence structure of a Gaussian graphical model. Using pseudo-likelihood, we derive an analytical expression to approximate the marginal likelihood for an arbitrary graph structure without invoking any assumptions about decomposability. The majority of the existing methods for learning Gaussian graphical models are either restricted to decomposable graphs or require specification of a tuning parameter that may have a substantial impact on learned structures. By combining a simple sparsity inducing prior for the graph structures with a default reference prior for the model parameters, we obtain a fast and easily applicable scoring function that works well for even high-dimensional data. We demonstrate the favourable performance of our approach by large-scale comparisons against the leading methods for learning non-decomposable Gaussian graphical models. A theoretical justification for our method is provided by showing that it yields a consistent estimator of the graph structure. (C) 2017 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available