4.6 Article

Quasi-static analysis of mechanical properties of Ti6Al4V lattice structures manufactured using selective laser melting

Journal

Publisher

SPRINGER LONDON LTD
DOI: 10.1007/s00170-017-0932-7

Keywords

Selective laser melting; Ti6Al4V; Lattice structure; Analytical modelling

Funding

  1. Natural Science Foundation of China [51405046]
  2. Program of International ST Cooperation [2014DFA73030]
  3. China Scholarship Council (CSC)

Ask authors/readers for more resources

Selective laser melting (SLM) is a transformative manufacturing process due to its ability to manufacture complex metal parts directly from various bulk powders. With the capability of reducing powder consumption and decreasing fabrication times, lattice structures, which are used as infilling materials within hollow parts, offer an effective solution for decreasing the high costs that currently impede the wider application of SLM in various industries. The assessment of mechanical properties of SLM-built lattice structures, however, remain challenging due to their complicated geometries, while pursuing experimental studies proves to be time-consuming due to the requirement of numerous part fabrication and physical testing. To address these research challenges, this study proposes an analytical modelling approach conducting quasi-static analysis on Ti6Al4V (Ti64) lattice structures. In order to investigate the structures' mechanical properties, dynamic balance equation of the structures under compression loads were first established, and the stress distribution of the structures was calculated explicitly using central difference method. The modelling approach was validated by conducting uniaxial compression tests on samples fabricated using SLM. The experiments showed that the equivalent elastic modulus (E*) and the ultimate stress (UTS) values of the Ti64 structures predicted by the analytical method were in good agreement with the experimental results. The paper also discusses the design principles of SLM-built lattice structures (mainly the selection of proper topologies and relative densities) and examines the necessity and flexibility of the proposed analytical approach compared with conventional theoretical methods and their experimental studies in the context of SLM process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available