4.7 Article

The Sloan Digital Sky Survey Reverberation Mapping Project: The Hβ Radius-Luminosity Relation

Journal

ASTROPHYSICAL JOURNAL
Volume 899, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.3847/1538-4357/aba001

Keywords

Active galaxies; Galaxy nuclei; Quasars; Supermassive black holes

Funding

  1. National Science Foundation of China [11721303, 11991052]
  2. National Key R&D Program of China [2016YFA0400702]
  3. NASA [HST-GO-15260.001-A, HST-GO-15650.002-A.]
  4. Alfred P. Sloan Research Fellowship
  5. NSF [AST-1715579]
  6. STFC [ST/R000824/1]
  7. Alfred P. Sloan Foundation
  8. National Science Foundation
  9. U.S. Department of Energy Office of Science
  10. University of Arizona
  11. Brazilian Participation Group
  12. Brookhaven National Laboratory
  13. Carnegie Mellon University
  14. University of Florida
  15. French Participation Group
  16. German Participation Group
  17. Harvard University
  18. Instituto de Astrofisica de Canarias
  19. Michigan State/Notre Dame/JINA Participation Group
  20. Johns Hopkins University
  21. Lawrence Berkeley National Laboratory
  22. Max Planck Institute for Astrophysics
  23. Max Planck Institute for Extraterrestrial Physics
  24. New Mexico State University
  25. New York University
  26. Ohio State University
  27. Pennsylvania State University
  28. University of Portsmouth
  29. Princeton University
  30. Spanish Participation Group
  31. University of Tokyo
  32. University of Utah
  33. Vanderbilt University
  34. University of Virginia
  35. University of Washington
  36. Yale University
  37. National Astronomical Observatories
  38. Chinese Academy of Sciences
  39. Special Fund for Astronomy from the Ministry of Finance in China

Ask authors/readers for more resources

Results from a few decades of reverberation mapping (RM) studies have revealed a correlation between the radius of the broad-line emitting region (BLR) and the continuum luminosity of active galactic nuclei. This radius-luminosity relation enables survey-scale black hole mass estimates across cosmic time, using relatively inexpensive single-epoch spectroscopy, rather than intensive RM time monitoring. However, recent results from newer RM campaigns challenge this widely used paradigm, reporting quasar BLR sizes that differ significantly from the previously established radius-luminosity relation. Using simulations of the radius-luminosity relation with the observational parameters of the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project, we find that this difference is not likely due to observational biases. Instead, it appears that previous RM samples were biased to a subset of quasar properties, and the broader parameter space occupied by the SDSS-RM quasar sample has a genuinely wider range of BLR sizes. We examine the correlation between the deviations from the radius-luminosity relation and several quasar parameters; the most significant correlations indicate that the deviations depend on the UV/optical spectral energy distribution and the relative amount of ionizing radiation. Our results indicate that single-epoch black hole mass estimates that do not account for the diversity of quasars in the radius-luminosity relation could be overestimated by an average of similar to 0.3 dex.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available