4.6 Article

Performance Comparison of Perovskite Composite Cathodes with BaZr0.1Ce0.7Y0.1Yb0.1O3-δin Anode-Supported Protonic Ceramic Fuel Cells

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 167, Issue 12, Pages -

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1945-7111/abab26

Keywords

Energy Conversion; Fuel Cells; Solid Oxide; High Temperature Materials; Power Sources; Solid-State Ionics

Funding

  1. New Energy and Industrial Technology Development Organization (NEDO)
  2. Japan Society for the Promotion of Science (JSPS) KAKENHI [JP15K18239]

Ask authors/readers for more resources

The present work investigates electrochemical performance of anode-supported protonic ceramic fuel cells (PCFCs) with composite cathodes consisting of an electronic conductive perovskite oxide and a protonic conductive BaZr0.1Ce0.7Y0.1Yb0.1O3-delta(BZCYYb). Although PCFCs are expected as a future high-efficiency device, further higher performance and reliability are essential. Thus, to enhance cathode performance, three conventional perovskite oxides, La0.6Sr0.4Co0.2Fe0.8O3-delta(LSCF), La0.6Sr0.4CoO3-delta(LSC), and La0.6Ba0.4CoO3-delta(LBC), that are commonly used in traditional solid oxide fuel cells, are evaluated here as the electronic conductive phase in cathodes containing BZCYYb. Results show that all three of these electronic conductive perovskite oxides are compatible with BZCYYb and stably function as a cathode in PCFC operation. Comparison among these three composite cathodes reveals that the PCFC with the LBC-BZCYYb cathode demonstrate the highest performance, e.g., maximum power densities of 0.57 W cm(-2)at 600 degrees C and 1.0 W cm(-2)at 700 degrees C. In addition, impedance spectra and fitting analysis reveal that the low electrode polarization resistance in the lower frequency range of the LBC-BZCYYb cathode contributes to the PCFC performance. In summary, composites of perovskite oxides, particularly LBC-BZCYYb, are suitable as cathode material to achieve high performance as well as stable operation in PCFCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available