4.6 Article

Deformation mechanism in Al0.1CoCrFeNi σ3(111)[11&x304;0] high entropy alloys - molecular dynamics simulations

Journal

RSC ADVANCES
Volume 10, Issue 46, Pages 27688-27696

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ra01885f

Keywords

-

Funding

  1. Natural Science Foundation of China [51971166]
  2. Key Laboratory of Shaanxi Provincial Education Department [20JS055]

Ask authors/readers for more resources

High entropy alloys (HEAs), composed of multiple components with equal or near atomic proportions, have extraordinary mechanical properties and are expected to bear the impact of high-speed forces in armor protection structure materials. In order to understand the deformation behaviour of HEAs under tensile and compressive loading, molecular dynamics simulations were performed to reveal the deformation mechanism and mechanical properties of three crystal structures: Al0.1CoCrFeNi HEAs without grain boundaries (perfect HEAs), Al0.1CoCrFeNi HEAs with grain boundaries of sigma 3(111)[11 & x304;0] (GBs HEAs) and grain boundaries of sigma 3(111)[11 & x304;0] with chemical cluster HEAs (cluster-GBs HEAs). The mechanical properties of the three models at the same strain rate were discussed. Then, the mechanical properties at different strain rates were analyzed. The movement and direction of internal dislocations during the deformation process were investigated. The simulation results show that the GBs HEAs and the cluster-GBs both play an important role in the deformation and failure of the HEAs. Under tensile loading, three behaviour stages of deformation were observed. Cluster-GBs HEAs have a larger yield strength and Young's modulus than that of GBs and perfect HEAs. The higher the strain rate is, the greater the stress reduction rate. Under compressive loading, there are only two behaviour stages of deformation. Cluster-GBs HEAs also have the largest yield strength. Under tensile and compressive deformation, Shockley partial dislocations of 1/6 are dominant and their moving direction and effect on mechanical properties are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available