4.7 Article

Polymorphic calcium alginate microfibers assembled using a programmable microfluidic field for cell regulation

Journal

LAB ON A CHIP
Volume 20, Issue 17, Pages 3158-3166

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0lc00517g

Keywords

-

Funding

  1. Natural Science Foundation of Guangdong Province, China [2018A0303130245, 2019A1515011769]
  2. Guangdong Basic and Applied Basic Research Foundation [2019A1515110684]
  3. Science Foundation for Young Research Group of Wuyi University [2019td08]

Ask authors/readers for more resources

Effectively guiding and accurately controlling cell adhesion and growth on the surfaces of specific morphological materials are key issues and hot research topics for optimizing biomaterials. Herein, novel polymorphic alginate microfibers formed through microfluidic spinning technology in a single microchip are presented. Through programming the flow and reaction kinetics in microchannels, other than self-modified micromorphic channel geometry, polymorphic microfibers with precisely tuned curvature-adjustable morphology can be obtained. Finite element (FE) simulations of the flow field (unidirectional fluid-solid coupling) proved the efficacy of the proposed control strategy. Moreover, the specific disordered-ordered cell arrangements showed a linear relationship between bioinspired alginate microfibers with different curvatures and the orientation angle of L929 cells, and diversified growth morphologies, including oblate ellipse, star, tree and strip shapes, occurred on the customizable interface curvature of the calcium alginate microfibers, providing a paradigm for using specific structured natural biomedical materials for cell regulation. This work represents a new design concept for manufacturing polymorphic fibrous biomedical materials through a unique marriage of the fields of green chemistry, hydromechanics, and biomaterials, which should be very useful for guiding the controllable construction of alginate materials for use in structural materials for biomedical and engineering purposes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available